Several Alexa Fluor dyes extinction coefficients and quantum yields tabulated // new deconvolution papers

Posted by George McNamara on
URL: http://confocal-microscopy-list.275.s1.nabble.com/Several-Alexa-Fluor-dyes-extinction-coefficients-and-quantum-yields-tabulated-new-deconvolution-papes-tp7581205.html

*****
To join, leave or search the confocal microscopy listserv, go to:
http://lists.umn.edu/cgi-bin/wa?A0=confocalmicroscopy
*****

Dear Confocal listserv

http://www.abcam.com/index.html?pageconfig=resource&rid=15527 
<http://www.abcam.com/index.html?pageconfig=resource&rid=15527>

Dye Absorption Emission Extinction Quantum Brightness

max (nm) max (nm) coefficient yield (Ec*QY/1000)

Alexa Fluor 405 402 421 35,000 - -

Alexa Fluor 488 495 519 73,000 0.92 67

Alexa Fluor 555 555 565 155,000 0.1 15

Alexa Fluor 568 578 603 88,000 0.69 61

Alexa Fluor 594 590 617 92,000 0.66 61

Alexa Fluor 647 650 668 270,000 0.33 89

Alexa Fluor 750 749 775 290,000 0.12 35


No E.c. or quantum yield, but an interesting new fluorophore from BD
Sirigen is Brilliant Ultraviolet 395 (BUV395),
http://www.bdbiosciences.com/documents/BD_Brilliant_Violet395_Datasheet.pdf
excitation max 348 nm, emission max 395 nm, more usefully with an
emission tail into the blue. I spoke with one of the BD Sirigen chemists
recently, who hinted that the performance would be similar (and maybe
better than) BV421:

http://www.biolegend.com/brilliantviolet

Dye Absorption Emission Extinction Quantum Brightness

max (nm) max (nm) coefficient yield (Ec*QY/1000)
BV421                     405 nm                              421
nm                             2,400,000                          0.6
(in DPBS)     1,560

Sirigen lists the E.c. of BV421 as 407 nm,
http://www.sirigen.com/sirigen_products.html

When I tried BV421 (anti-human CD4 on human PBMCs in PBS), it was very
photostable with an Hg arc lamp, standard Zeiss DAPI filter cube, and
Zeiss widefield microscope, 63x/1.4 NA oil immersion lens. Photobleached
quickly (did acquire nice single focus image) on a Leica SP5 confocal
microscope, 63x/1.4 NA oil immersion lens, with brand new 405 nm laser -
my thanks to BioLegend for the specimen.

**

A couple of papers (open access) that caught my attention this weekend:

High-resolution restoration of 3D structures from widefield images with
extreme low signal-to-noise-ratio.
<http://www.ncbi.nlm.nih.gov/pubmed/24106307>

Arigovindan M, Fung JC, Elnatan D, Mennella V, Chan YH, Pollard M,
Branlund E, *Sedat* JW,*Agard* DA.

Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17344-9. doi:
10.1073/pnas.1315675110. Epub 2013 Oct 8.

PMID:
    24106307


Towards real-time image *deconvolution*: application to confocal and
STED microscopy. <http://www.ncbi.nlm.nih.gov/pubmed/23982127>

Zanella R, Zanghirati G, Cavicchioli R, Zanni L, Boccacci P, Bertero M,
Vicidomini G.

Sci Rep. 2013;3:2523. doi: 10.1038/srep02523.

PMID:
    23982127

In particular, Figure 4j, right panel,
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3755287/figure/f4/
shows -- for that specimen -- confocal + SGP deconvolution performs
equally well (better than the raw data in 4i, right panel) as CW-STED +
SGP (I realize that their STED may not be performing as well as it could).


http://www.nature.com/srep/2013/130204/srep01208/full/srep01208.html


  Simple super-resolution live-cell imaging based on diffusion-assisted
  Förster resonance energy transfer

    * Sangyeon Cho
      <http://www.nature.com/srep/2013/130204/srep01208/full/srep01208.html#auth-1>,

    * Jaeduck Jang
      <http://www.nature.com/srep/2013/130204/srep01208/full/srep01208.html#auth-2>,

    * Chaeyeon Song
      <http://www.nature.com/srep/2013/130204/srep01208/full/srep01208.html#auth-3>,

    * Heeyoung Lee
      <http://www.nature.com/srep/2013/130204/srep01208/full/srep01208.html#auth-4>,

    * Prabhakar Ganesan
      <http://www.nature.com/srep/2013/130204/srep01208/full/srep01208.html#auth-5>,

    * Tae-Young Yoon
      <http://www.nature.com/srep/2013/130204/srep01208/full/srep01208.html#auth-6>,

    * Mahn Won Kim
      <http://www.nature.com/srep/2013/130204/srep01208/full/srep01208.html#auth-7>,

    * Myung Chul Choi
      <http://www.nature.com/srep/2013/130204/srep01208/full/srep01208.html#auth-8>,

    * Hyotcherl Ihee
      <http://www.nature.com/srep/2013/130204/srep01208/full/srep01208.html#auth-9>,

    * Won Do Heo
      <http://www.nature.com/srep/2013/130204/srep01208/full/srep01208.html#auth-10>

    * & YongKeun Park
      <http://www.nature.com/srep/2013/130204/srep01208/full/srep01208.html#auth-11>

Can someone enlighten me how Cho et al's figure 2 obtained a 3x
improvement in resolution, to 33 nm, by deconvolving their dSOFI output?
http://www.nature.com/srep/2013/130204/srep01208/fig_tab/srep01208_F2.html



Enjoy,

George